MSc Data Science

Why choose Herts?

  • Teaching Excellence: You will be taught by internationally recognised research staff with expertise across mathematics, statistics, astrophysics, medical physics, and computer science (see key staff).
  • Work-Placement Opportunities: You have an option to take a one-year paid industry placement. Students have had placements with organisations including NatWest, Sparta Global, and Sky.
  • Industry Connections: Benefit from our strong links with the computing industry. We work with employers such as Microsoft and Hewlett Packard for students to engage in careers fairs and industry-sessions.

Due to the ongoing Coronavirus pandemic, examinations may be replaced by an alternative form of assessment during the academic year 2020/2021. Please refer to the Programme Specification on these pages for further details.

About the course

Data is the currency of all but the most theoretically-based scientific research, and it also underpins our modern world, from the flow of data across international banking networks and the spread of memes across social networks, to the complex models of weather forecasting. The constant generation of data from our digital society feeds into our everyday lives, affecting how we receive healthcare to influencing our shopping habits. In order to handle, make sense of, and exploit large volumes of available data requires highly skilled human insight, analysis and visualisation. The professionals working in this field are called ‘data scientists’, who blend advanced mathematical and statistical skills with programming, database design, machine learning, modelling, simulation and innovative data visualisation. These professionals are in high demand in both public and private sectors in the UK and worldwide. This programme aims and learning outcomes are built around two guiding principles:

  • To provide comprehensive understanding of the fundamental mathematical and statistical concepts underlying data science, and how they are implemented in algorithms and machine learning techniques to solve a variety of data processing and analysis problems.
  • To provide training in the practical skills relevant to data science, central of which is the ability to write clean and efficient code in industry-recognised languages (in particular, Python and R), but also includes data handling, manipulation, mining and visualisation techniques.

Why choose this course?

  • This programme is distinctive in its philosophy of widening participation and provides a route to gain skills and training in data science to those from a background not traditionally associated with the STEM-themes of mathematics, statistics and programming. The programme is designed to be appealing to a broad range of students who are seeking training or up-skilling in data science.
  • You will benefit from the expertise of astrophysicists, physicists, mathematicians and computer scientists with international research profiles. Their day-to-day research involves application of, and in some cases the development of new, data science skills, from fundamental statistical analyses, the use of distributed high-performance computing, and research into novel artificial intelligence algorithms.
  • We aim to make the programme distinctive in terms of the mixture of hard and soft skills, and the close personal relationship that we are developing with employers, which will feed into the programme through continuous assessment of the latest industry-relevant tools, which are continually evolving as new technology and software becomes available.
  • You will experience a multidisciplinary approach to data science by experiencing challenges in computer science, creative arts, medical and business environments.
  • You will have the opportunity to attend a wide range of research-focused seminars to excite and spark your intellectual curiosity.

What will I study?

The curriculum is structured to ensure are exposed to the fundamental mathematical and statistical principles underpinning all data science. These themes will always be relevant in what is a constantly evolving field. Theoretical work will be reinforced with practical application through hands-on laboratories and workshops, to enable you to understand and appreciate how fundamental principles are reflected in a broad range of data processing and analyses. You will become proficient in key practical skills (e.g. use of pandas for working with data structures within Python, and ggplot2 for visualisation in Python and R) using ‘real-world’ data where possible. In some cases, this data can be sourced from active research projects being conducted by members of teaching staff.

The programme focuses on providing ‘end-to-end' training so that you become competent not only in the processing and analysis of data, but also manipulating and preparing data from a raw state as well as interpreting results and effectively communicating findings to others. This will enable you to be prepared for real world challenges and application and will help you to develop independence in your analytical and critical thinking. This will be nurtured in laboratory-based practical sessions so you can put your theories into practice.

  • Level 6
    Module Credits Compulsory/optional
    Multivariate Statistics 15 Credits Optional
    Linear Modelling 15 Credits Optional
  • Level 7
    Module Credits Compulsory/optional
    Neural Networks and Machine Learning 30 Credits Compulsory
    Foundations of Data Science 30 Credits Compulsory
    Applied Data Science 2 15 Credits Compulsory
    Data Science Project 60 Credits Compulsory
    Data Science Core Skills Bootcamp 0 Credits Optional
    Data Handling and Visualisation 15 Credits Optional
    Data Mining and Discovery 15 Credits Optional
  • Key staff

    Dr James Geach
    Professor of Astrophysics / Programme Leader / Director of the Centre of Data Innovation Research
    Find out more about Dr James Geach

    Dr Oleg Blyuss
    Senior Lecturer in Statistics and Data Science
    Find out more about Dr Oleg Blyuss

    Dr Vidas Regelskis
    Lecturer in Mathematics
    Find out more about Dr Vidas Regelskis

    Further course information

    Course fact sheets
    MSc Data Science Download
    Programme specifications
    MSc Data Science Download
    Additional information

    Sandwich placement or study abroad year

    n/a

    Applications open to international and EU students

    Yes

    Student experience

    At the University of Hertfordshire, we want to make sure your time studying with us is as stress-free and rewarding as possible. We offer a range of support services including; student wellbeing, academic support, accommodation and childcare to ensure that you make the most of your time at Herts and can focus on studying and having fun.

    Find out about how we support our students

    You can also read our student blogs to find out about life at Herts.

    Please note that some of the images and videos on our course pages may have been taken before social distancing rules in the UK came into force.