Sharpening the tools: genomics-assisted radiation mutagenesis in winter oilseed rape

lan Bancroft 16th October, 2023

- Visualizing genome structural variation in oilseed rape
- Trimming the Rfo introgression
- A prototype WOSR genome re-sequenced radiation panel

• Preferable to have a more compact display to compare many genomes

UNIVERSITY of York

lan Bancroft 16th October, 2023

Read depth if genome re-sequencing *B. rapa* (A genome only)

Display top BLAST pairs

in silico AACC

Display top BLAST pairs

Display top BLAST pairs

in silico AACC B. oleracea CC B. rapa AA B. napus **C1 C2 Reciprocal top C3 BLAST** hit gene pairs **C4** arranged by **C5** coordinate in one of the **C6** genomes **C7 C8 C9**

Display top BLAST pairs

in silico AACC B. oleracea CC B. rapa AA B. napus **C1 C2 Reciprocal top C3 BLAST hit** gene pairs **C4** arranged by **C5** coordinate in one of the **C6** genomes **C7 C8 C9**

Sharpening the tools: genomics-assisted radiation mutagenesis in winter oilseed rape

lan Bancroft 16th October, 2023

- Visualizing genome structural variation in oilseed rape
- Trimming the Rfo introgression
- A prototype WOSR genome re-sequenced radiation panel

Display top BLAST pairs

in silico AACC B. oleracea CC B. rapa AA B. napus **C1 C2 Reciprocal top C3 BLAST** hit gene pairs **C4** arranged by **C5** coordinate in one of the **C6** genomes **C7 C8 C9**

Three genomes can be visualized using genome re-sequencing data

Display top BLAST triplets Reciprocal top BLAST hit gene triplets arranged by coordinate in one of the genomes

 Read mapping to 3 genomes can be visualized, based on homoeologous gene triplets

Fertility restorer introgression from radish can be identified and delineated

Display top BLAST triplets Reciprocal top BLAST hit gene triplets arranged by coordinate in one of the genomes

Fertility restorer introgression from radish can be identified and delineated

Display top BLAST triplets Reciprocal top BLAST hit gene triplets arranged by coordinate in one of the genomes

Generalized method for visualization of wild relative introgressions

Visualizations can be ordered by any genome

R9

Display top BLAST triplets Reciprocal top BLAST hit gene triplets arranged by coordinate in one of the genomes

Radiation treatment can be used to disrupt introgressions

Display top BLAST triplets

Radish RR in silico AACC B. oleracea CC in silico AARR B. rapa AA CMS female Rfo male **C1 C2 Reciprocal top C3 BLAST hit** gene triplets **C4** arranged by **R9 C5** coordinate in one of the **C6** genomes **C7 C8 C9** CMS_1 CMS_2 CMS_4 CMS_4 Rfo_1 Rfo_3 Rfo_3 Rfo_3

Visualizing genome dosage to assess radiation-induced variation genome-wide

Display top BLAST triplets Reciprocal top BLAST hit gene triplets arranged by coordinate in one of the genomes

Visualizing genome dosage to assess radiation-induced variation genome-wide

Display top BLAST triplets Reciprocal top BLAST hit gene triplets arranged by coordinate in one of the genomes

Radiation-induced lesions elsewhere in the genome

Visualizing genome dosage to assess radiation-induced variation genome-wide

СМҮК

BLAST triplets

Genome-wide variation can be related to traits such as seed yield

Genome-wide variation can be related to traits such as seed yield

Sharpening the tools: genomics-assisted radiation mutagenesis in winter oilseed rape

lan Bancroft 16th October, 2023

- Visualizing genome structural variation in oilseed rape
- Trimming the Rfo introgression
- A prototype WOSR genome re-sequenced radiation panel

EMS mutagenesis for "TILLING"


```
UNIVERSITY of York
```

Radiation mutagenesis

UNIVERSITY of York

Development of a genome re-sequenced radiation panel for reverse genetics

Development of a genome re-sequenced radiation panel for reverse genetics

UNIVERSITY of York

UNIVERSITY of York

UNIVERSITY of York

Frequency of large-scale lesions induced by radiation

Radiation dosage / Gy	A genome chromosome loss / plant	C genome chromosome loss / plant	A genome chromosome duplication / plant	C genome chromosome duplication / plant	A genome visible deletion / plant	C genome visible deletion / plant	A genome visible duplication / plant	C genome visible duplication / plant	Mean no. deletions and duplications / plant
NONE	0	0	0	0	0	0	0	0	0
Gamma									
750	0	0	0.06	0	0.5	0.88	0.06	0.20	0.41
1500	0.06	0.06	0	0	0.63	1.13	0.13	0.31	0.55
1750	0.06	0	0.06	0	1.31	1.69	0.56	0.31	0.97
2000	0	0.06	0	0	1.5	2.38	0.63	0.31	1.21
FINI 40	0 1 2	0	0	0	0 38	0.25	0	0.25	0 22
0 60	0.13	0 13	0	0	0.38	0.23	0 13	0.23	0.22
80	0	0.15	0	0	1.25	1.38	0.38	0.63	0.91
100	-		-	•	1.20	1.00	0.00	0.00	0.01

- Gamma and Fast Neutrons induce similar types of variation
- Chromosome number variation detected but is independent of radiation dosage
- Lesion frequency increases with radiation dosage
- More lesions in the C genome than in the A genome
- ~4-fold more deletions than duplications

1. Manual inspection of Excel spreadsheets of RPKM data, aided by conditional formatting

	N					~-	2111	213	20	21	24	21	20	21	20	~ •	2		21		u u i	110			U (L/	uψu		/ 11 /	v u /	u u u u	Y WIL	
				코고	17	7	Ξ	7	7	7	2	7				H	7	7	7	7	7	2	7		7	2 2	1 1	2	7	7 7	2	-1
	a a a a a a a a a a a a a a a a a a a		38	<u> </u>	6	33	26	395	õ	66	ŝ	56	39	g	å	ğ	5	ğ	5	ğ	6	ğ	ğ	<u>6</u>	11	H H		113	11	1 I I I I I I I I I I I I I I I I I I I	118	119
	2		ģ	öö	6	ö	ö	ä	ö	ö	ö	ö	ģ	ö	ö	5	5	4	5	2	2	5	5	ģ	5	3 3	5 6	5	5	5 5	5	6
		ő	8	8 8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8 8	3 3	8	8	8 8	8	8
1	8	å	6	5 62	82	52	23	82	82	23	52	82	6	82	82	52	82	23	2	23	23	23	52	6	23	2 2	1 0	82	29	82	82	23 23
1263	A08p12620.1_BnaDAR	A08_013915393_013916338	9 4	4.5	7 6.8	4.7	5.5	6.9	5.7	6.2	7.3	4.6	7.9	5.8	6.2	5.7	4.1	6.2	5.3	5.8	6.8	7.2	5.6	6.3	5.4	66	.5 5	5.2	5.3	5 6.8	6.2	5.:
1264	A08p12630.1_BnaDAR	A08_013917443_013920673	7	5.5	5 5.8	5	5.2	6.6	5.2	5.1	6.5	4.8	6.2	7	4.6	5.6	2.8	6.1	5	5.2	5	6.6	4.3	5.7	5	54	.9 5	5.5	4.5	5 6.2	5.6	4.9
1265	A08p12640.1_BnaDAR	A08_013920747_013922022	7	4.4	5 6.2	4.9	4.2	6.3	4.2	5.1	5.4	5.5	5.4	5.8	4.9	4.9	2.9	5.3	4.3	5	5.3	5.8	4.4	5.1	3.5	6	5	4	4.2	6 7	5.8	4.4
1266	A08p12650.1_BnaDAR	A08_013924607_013925496	7	6.1	76	5.8	5	7	5.7	5.1	8	4.2	8.7	6.9	8	6	2.8	5.3	3.5	6.3	5.9	7	4.2	5.6	4.1	74	.3 5	5.6	5.9	6 5.6	7.3	6.:
1267	A08p12660.1_BnaDAR	A08_013932792_013934931	4	3.2	3 3.7	2.7	3.3	3.3	2.7	2.4	2.8	2.9	3.9	3.7	2.7	2.9	1.4	2.4	2.3	2.1	2.3	3	2.6	2.2	2.8	32	.4 2	2.7	3.3	3 3.3	3	2.
1268	A08p12670.1_BnaDAR	A08_013948557_013952755	5	4	5 5.2	4.6	4.8	6.1	5.3	4.8	6.5	4.6	4.3	5.6	2.8	5.4	2.9	5.3	5.1	5.3	4.4	4.6	4.2	5.2	4.3	44	.9 4	4.1	3.9	4 5.3	4.5	3.0
1269	A08p12680.1_BnaDAR	A08_013964720_013966814	9	7	9 7.2	6.5	7.1	7.9	6.4	7	9.6	6.9	8.2	8.9	4.7	6.8	4.4	7.8	5.8	7.7	6.7	6.8	5.3	7.6	7	76	.9 5	5.8	5.9	7 8.1	8.6	7.3
1270	A08p12690.1_BnaDAR	A08_013972218_013972858	3	1.6	2 1.4	0.8	1.6	1	0.8	1.5	1.4	1.2	2.1	1.9	1.4	1.2	1.9	2.2	1.5	1.1	1.2	1.5	2	2.1	0.9	1 1	.5 2	2.3	1.5	1 0.7	1.3	1.3
1271	A08p12700.1_BnaDAR	A08_013975872_013976939	3	1.9	3 2.3	2	2.3	2.6	2.2	2.8	2.4	2.2	8.7	2.4	1.8	1.9	1.7	4.1	2	2.5	1.5	2.1	7.1	3.2	2	2	2 1	1.7	1.4	2 2.8	2.8	2.4
1272	A08p12710.1_BnaDAR	A08_013979545_013980807	9	6.2	3 6.6	5.7	5.5	6.8	6.2	6.7	7.9	5.8	10	1.7	9.3	_ 6	4.1	6.6	4.8	5.5	5.4	_ 7	8.8	7.4	5.4	8 5	.7 4	4.7	5.4	7 6.9	6.6	6.9
1273	A08p12720.1_BnaDAR	A08_013984556_013989227	6	4.4	5 5.7	4.7	4.4	6.5	5.3	5.6	6.1	4.8	6	0.1	3.5	5.3	4.8	5.3	4.6	4.8	4.2	5.3	4.7	5.5	4.5	5	5 4	4.4	4.4	5 5.7	5	4.
1274	A08p12/30.1_BnaDAR	A08_013991308_013991505	6	4.3	3 4.9	3.6	2.3	7.8	4.5	5.7	4.8	4.3	0	48	5.7	3.4	6.9	6.5	3.7	4.6	2.2	5	5.3	3.5	4.8	54	.1 2	2.5	3.9	6 8.9	4.4	
1275	A08p12740.1_BnaDAR	A08_013996917_013997440	5	2.9	4 2.8	3	3.4	4.8	4.2	4	2.8	6.6	0.1	43	1.9	3.3	3.8	2.2	2.4	2.8	2.8	3.9	2.4	3	2.3	4 2	.3 2	2.8	4.3	4 4.1	3.2	
1276	A08p12750.1_BnaDAR	A08_013998781_013999290	6	4.5	4 3	3.1	2.9	5.2	3.1	3.6	2.3	1.8	0.3	39	5.2	3.3	4.2	3.7	4.4	2.8	4.2	3.2	4.4	2.7	4.2	23	.3 2	2.6	2.2	4 5.2	4.6	_ 1
1277	A08p12760.1_BnaDAR	A08_014003084_014005936		5.4	/ 6.4	4.6	5.7	6.7	5.1	5.6	6.8	4.8	6.6	6.1	3.3	5.2	4.8	5.3	4.4	4.9	5.1	5.6	5	5.8	4.9	54	.8 4	4.3	5	5 6.1	5.3	5.9
1278	A08p12770.1_BnaDAR	A08_014006863_014008873	8	5.8	5 5.5	4.2	4.9	5.9	5.8	5.2	7.2	4.	7.6	b.2	7.3	4.6	4.5	6.5	3.9	4	5.1	5.7	4.6	5.3	5.5	8	5	. 5	5.1	/ 5.8	5.4	5.
1279	A08p12780.1_BnaDAR	A08_014009852_014010472	8 4	4.1	/ 6.4	6.3	7.4		5.8	6.4	6.7	4.2	9.7	1.6	5.7	6.2	6.6	5.6	5.4	6.2	5.4	6.1	6.9	7.5	6.6	6	5 4	4.4	5.3	6 6.9	6.3	4.
1280	A08p12/90.1_BnaDAR	A08_014012/08_014015650	5	4	5 4.9	3.5	3.6	4.6	3.8	4.3	4.6	3.8	0.1	4.7	2.4	3.6	3.6	5.6	4	3.8	4.2	4.1	4.7	5.1	3.9	3 3	.3 3	3.4	3.5	4 4.8	4.1	4.
1281	A08p12800.1_BnaDAR	A08_014026164_014026915	9	5.7	/ 6.8	5.1	6.1	7.6	4.9	_ 4	8.5	5.3	6.9	6.6	7.9	6.7	_ /	5.9	4.7	5.7	6.1	6	6.1	6.5	5.9	96	.3	_ 6	5./ 1	10 6.9	7.4	5.,
1282	A08p12810.1_BnaDAR	A08_014028274_014029221	8	6.2	9 6.3	5.4	6.2	8.3	6.9	5.7	7.4	5.8	7.2	1.1	3.5	6.2	5.3	7.4	6.1	7.2	5.7	6.1	6.4	6.6	6.1	<i>′</i>	6 5	5.7	5.7	6 9.5	5	
1283	A08p12820.1_BnaDAR	A08_014031218_014032245	6	3.7	5.3	4.3	4.3	5.4	5.3	5.6	6.1	4.5	5.9	6.3	3.1	5.1	6.4	5.9	4./	6.3	4	5.4	4.6	5.6	4.6	53	.5 3	3.3	4.2	5 5.7	4.2	4.9
1284	A08p12830.1_BnaDAR	A08_014034488_014035020	5	3.9	5 6.9	5.2	5.3	5.1	5.4	3.5	6	4	6.3	6	4	5	3.8	5.7	5.2	3.9	5	6.1	5.1	5.9	4.1	4 4	.6 5	5.7	3.5	5 4.2	4.2	4.0
1285	A08p12840.1_BnaDAR	A08_014040254_014040662	3	2.2	4 4.3	4.3	2.6	5.9	3.5	3	3.3	3.1	2.8	3.8	2	4.6	4	4.9	2.5	2.5	2.1	3.5	3.5	2.4	3.1	4 5	.2 2	2.5	4.1	1 5.5	4.3	2.
1286	A08p12850.1_BnaDAR	A08_014040842_014043333	8	/.1	/ 6.1	4.4	5.1	6.6	5.3	5.3	7.2	5.4	8.5	7.6	8.4	5.7	5	5.6	4.7	5.5	6.3	_ 6	5.9	6.4	4.5	/ 4	.9 5	5.1	5.1	8 5.6	6.9	5.9
1287	A08p12860.1_BnaDAR	A08_014046623_014049044	7.	5.7	5 5.5	4.5	4.7	6.9	5.6	5.4	7.1	4.6	6.6	6.7	5.8	5.5	5.2	5.4	4.7	4.8	4.7	5.4	5.3	5.7	5.4	75	.1 4	4.9	5	6 6.2	. 6	
1288	A08p12870.1_BnaDAR	A08_014049529_014050040	/	5	9 5.7	5.9	6.9	7	5.8	4.8	7.3	4.8	8.8	8.3	5.5	7.5	6.1	7.5	5.2	5.1	4.2	_ 7	5.1	7.5	7.4	76	.2 6	5.6	5	7 5.7	6.8	4.
1289	A08p12880.1_BnaDAR	A08_014050130_014058487	2	1.7	2 2.1	1.9	2.1	2.4	2.8	1.9	2.1	3.1	3.5	2.4	1.2	2	3.1	2.2	2.6	2.6	2	3.2	3.3	3.1	1.8	2 3	.5 2	2.1	1.8	2 2.9	2	1
1290	A08p12890.1_BnaDAR	A08_014060350_014066736	6	4.8	5 5.3	4.5	2.7	3.6	2.6	5.2	6.4	4.9	6	3.4	2	3	3.1	5.2	4.7	4.6	3.8	2.8	4.5	5.6	5.1	3 2	.5 4	4.3	4.4	5 4.3	5	4.8
1291	A08p12900.1_BnaDAR	A08_014066665_014083352	6	4.8	5 5.7	4.5	4.9	5.9	5.1	5.2	6.3	4.5	6.1	6.3	3.3	5.1	5.1	5.6	4.7	4.8	5.2	5.1	5	5.1	4.8	54	.9 4	4.5	4.6	5 5.7	5.4	5.3
1292	A08p12910.1_BnaDAR	A08_014095993_014099118	6	4.8	7 5.6	4.8	5.1	6.7	5.4	5.7	6.8	5.1	6	6.6	3.1	5.5	5	5.9	5	5.9	5.3	5.5	4.8	5.7	4.4	5 5	.1 4	4.7	4.8	5 5.8	5.3	5.8
1293	A08p12920.1_BnaDAR	A08_014099000_014100521	8	6	7 6.2	5.3	6.1	6.6	6	6.1	6	4.9	7	6.5	5	5.8	5.1	6.5	5.4	4.8	5.4	5.8	4.9	7.2	5.9	65	.8	5	5.5	7 6.9	6.5	7.1
1294	A08p12930.1 BnaDAR	A08 014104618 014106266	9	5.5	7 5.8	4.1	4.7	6.2	5.6	5.6	6.8	4.3	8.3	6.4	8.4	6.2	5.7	5.3	5.2	5	5	5	6.3	5.7	5.1	5	5 3	3.4	3.9	6 5.6	5.8	5.8

Identification of small-scale lesions induced by radiation

2. Computationally using VarScan, for both InDels and SNVs

2. Computationally using VarScan, for both InDels and SNVs

Target gene	Line	Nucleotide position	Reference allele	Variant allele	Read depth reference allele	Read depth variant allele	Validated?
Bna.CytP450.A5	G2000-83b	A05:5736668	СТ	С	0	13	Yes
Bna.elF(iso)4E.A4	G2000-119-1	A04:7768451	GGAGAGGTAGAAGAT	G	0	3	Yes
Bna.FAD2.A5	G2000-137b	A05:36892995	CCACCACTTACTTCCCTCTCCT	С	11	2	Yes
Bna.FAD2.C5	G1750-356a	C05:51453809	Т	А	5	4	Yes
Bna.FAD3.A4	G2000-145b	A04:16659808	CCTTT	С	6	6	Yes
Bna.FAE1.A8	G2000-173b	A08:16404035	GA	G	3	2	Yes
Bna.GTR1.A6a	g1750-153-1	A06:11068670	ТА	Т	0	10	Yes
Bna.GTR2.A6	G1750-327a	A06:34290460	GC	G	3	4	Yes
Bna.GTR2.A9a	G2000-396-1	A09:4453814	TGA	Т	7	8	Yes
Bna.GTR2.C9	g2000-408-2	C09:5200267	A	ACAC	10	3	Yes
Bna.VTE4.C2a	g2000-403-1	C02:15001410	TA	Т	0	7	Yes
Bna.VTE4.C2a	G1750-489b	C02:15002099	CCGT	С	0	7	Yes

- High false discovery rate, especially for SNVs at low read depth
- Mutation load much lower than with EMS
- High proportion of mutants are deletions of a few bases that disrupt reading frames

FAE1 orthologues control erucic acid content in an additive manner

Identified radiation lines:

G2000-308-1 (*FAE1*.A8 deletion) G1750_2b (*FAE1*.A8 duplication) G1500_6a (*FAE1*.C3 deletion) G2000-119a (*FAE1*.C3 duplication)

model	0-108b	0-110-2)-112a	0-113b	D-114a	0-115-1	0-117-1	0-118-1)-119a	0-120-1)-122-2	0-123-1	0-125-1)-126-1)-128a	0-132-2	0-133-1
Gene	G200(G200(G200(G200(G200(G200(G200(G200(G200(G200(G200(G200(G200(G200(G200(G200(G200(
Bo3g168710.1	1.17	1.29	1.22	1.41	1.11	1.00	0.97	1.37	1.10	1.26	1.18	1.02	0.99	1.23	0.85	1.01	0.79
Bo3g168720.1	0.90	1.20	1.21	1.08	1.29	1.23	1.31	1.25	1.02	1.26	1.04	1.29	0.85	0.95	0.92	1.11	1.06
Bo3g168740.1	0.78	1.02	0.63	0.49	0.79	1.05	0.74	0.74	0.97	0.66	1.05	0.49	0.65	1.28	0.57	0.57	0.99
Bo3g168750.1	1.04	1.25	0.90	1.27	1.00	1.25	1.11	0.62	1.07	0.51	1.14	1.40	1.45	1.40	1.32	0.97	0.82
BnaC03g65930D	0.83	0.20	1.01	1.50	1.48	0.88	1.59	1.33	0.69	0.62	1.38	0.56	0.59	1.05	0.84	0.59	1.43
Bo3g168770.1	1.05	1.16	0.89	1.02	1.04	1.04	1.21	1.28	0.76	1.04	1.26	1.08	0.71	0.96	1.22	1.07	1.18
Bo3g168780.1	0.75	1.05	0.66	1.23	1.32	1.10	0.92	0.88	0.70	0.53	0.88	0.97	0.79	0.75	0.92	0.61	0.57
Bo3g168790.1	0.97	0.87	1.00	0.91	0.92	0.77	0.99	1.16	1.19	1.07	0.89	0.76	0.98	0.88	1.04	1.10	1.26
Bo3g168800.1	1.16	1.24	0.97	1.04	1.17	0.84	0.88	1.35	1.01	0.66	0.88	1.34	1.41	1.22	0.85	0.80	0.92
Bo3g168810.1 BnaFAE1.C3	0.95	0.74	0.96	1.36	0.88	1.22	0.66	1.38	2.21	0.56	0.46	1.06	0.93	0.88	1.33	0.93	1.03
BnaC03g51250.1T	0.84	0.93	1.03	1.25	1.11	0.89	0.96	1.24	0.71	0.77	0.89	1.25	0.69	0.90	1.11	1.27	0.66
BnaC03g51270.1T	1.21	0.86	0.82	1.00	1.04	0.86	0.79	0.64	1.18	1.39	1.36	1.21	0.75	0.75	0.96	1.36	0.96
BnaC03g51310.1T	1.04	1.00	0.80	1.04	1.21	0.92	1.11	1.09	1.08	0.95	1.24	1.18	1.13	0.87	1.42	0.98	0.94
Bo3g168820.1	0.77	1.47	0.91	1.33	0.91	1.40	1.19	0.98	1.05	0.70	0.49	1.26	0.84	0.84	1.12	0.70	1.40
Bo3g168830.1	0.98	0.82	1.18	1.07	1.05	1.02	0.96	1.28	1.06	0.76	0.82	0.97	0.86	1.04	0.99	1.10	1.05
Bo3g168840.1	1.10	1.27	1.16	0.84	1.12	0.99	1.01	1.06	0.87	0.89	1.00	1.15	1.06	1.03	1.18	0.99	1.15
Bo3g168850.1	1.03	1.09	0.87	1.03	0.79	1.07	1.06	1.02	0.82	1.13	0.99	0.88	0.74	1.28	0.99	1.02	1.04
Bo3g168860.1	0.86	1.07	0.98	1.14	0.94	0.84	1.00	0.80	1.01	0.97	0.81	1.21	1.15	0.75	0.85	0.95	0.68
Bo3g168870.1	1.03	1.09	0.87	1.05	1.06	0.78	1.23	0.94	0.87	1.11	0.98	0.96	0.86	0.92	1.27	0.97	1.01

Testing predictive impacts of gene copy number variation: FAE1 and oil erucic acid content

Testing predictive impacts of gene copy number variation: FAD2 and oil linoleic acid content

FAD2 orthologues control PUFA (especially linolenic acid) content in an additive manner

Identified radiation line:

G2000-137b (FAD2.A5 21 base deletion)

	Target gene	Line	Nucleotide position	Reference allele	Variant allele	Read depth reference allele	Read depth variant allele	Validated?	
	Bna.CytP450.A5	G2000-83b	A05:5736668	СТ	С	0	13	Yes	
-	Bna.elF(iso)4E.A4	G2000-119-1	A04:7768451	GGAGAGGTAGAAGAT	Ģ	0	3	Yes	
<	Bna.FAD2.A5	G2000-137b	A05:36892995	CCACCACTTACTTCCCTCTCCT	С	11	2	Yes	\geq
-	Bna.FAD2.C5	G1750-356a	C05:51453809	T	À	5	4	Yes	
-	Bna.FAD3.A4	G2000-145b	A04:16659808	CCTTT	С	6	6	Yes	
-	Bna.FAE1.A8	G2000-173b	A08:16404035	GA	G	3	2	Yes	
-	Bna.GTR1.A6a	g1750-153-1	A06:11068670	ТА	Т	0	10	Yes	
-	Bna.GTR2.A6	G1750-327a	A06:34290460	GC	G	3	4	Yes	
-	Bna.GTR2.A9a	G2000-396-1	A09:4453814	TGA	Т	7	8	Yes	
-	Bna.GTR2.C9	g2000-408-2	C09:5200267	A	ACAC	10	3	Yes	
-	Bna.VTE4.C2a	g2000-403-1	C02:15001410	ТА	Т	0	7	Yes	
	Bna.VTE4.C2a	G1750-489b	C02:15002099	CCGT	С	0	7	Yes	

Testing predictive impacts of gene copy number variation: FAD2 and oil linoleic acid content

Testing predictive impacts of gene copy number variation: FAD2 and oil linoleic acid content

UNIVERSITY of York

Conclusions

- Radiation treatment is an effective tool for breaking up introgressions
- Visualization of whole genome enables identification of additional lesions
- Structural changes correlated with poor agronomic traits can be identified
- Genome re-sequencing enables identification of abundant large-scale deletions
- Panel of ~1100 lines sufficient to achieve saturation for large-scale deletions
- Deleted segments often inherited by siblings, so increasing copy number feasible
- High false discovery rate for single nucleotide variants
- Indels disrupting open reading frames are the most common small variant type
- Panel of ~1100 lines insufficient to achieve saturation for single gene knockout
- Predicted phenotypes confirmed for knockouts of two fatty acid synthesis genes
- Increased FAE1 dosage results in novel increase in erucic acid content

Acknowledgements

- Lenka Havlickova
- Zhesi He
- Madeleine Berger
- Lihong Wang Greta Sandmann Yen Peng Chew Guilherme Ventura Yoshikawa
 - BBSRC BB/L002124/1

Frederic Beaudoin

BBSRC BB/X010988/1

Guangyuan Lu Qiong Hu

 Key Research Projects of Hubei Province (2021EHB026)

Jia Liu

