
Planets, Stars & Nebulae 

 

Planets around binary stars – an investigation of orbits and 

temperatures 

 
Introduction 

 
In our solar system, each planet has a theoretical equilibrium surface temperature that ensures 

that the power it radiates balances the sum of the power it receives from the Sun and the 

power it generates internally. Since the latter is reasonably steady, and the orbits of the planets 

are not very eccentric, this temperature does not change much as the planet circulates about its 

orbit.  

 

To make things more interesting, we consider in this practical, the orbits of planets in a binary 

star system. In principle there are lots of possible systems and orbits to investigate, so to 

simplify things we restrict ourselves to considering a planet that orbits in the orbital plane of the 

binary. In addition, we will have the two stars in the binary orbiting their common centre of 

mass in circular orbits. This set-up has the nice feature that the separation of the two stars 

remains fixed and we can move into a rotating frame of reference in which they are stationary. 

 

 

 

R 

M2 M1 

(x,y) 

x 

y 

 
 

The Program 
 

Open binary.xls. The program plots orbits in the rotating frame and also plots the 

temperature on the planetary surface. To run the program, you press ORBIT and input 

the initial conditions of the orbit and the nature of the planet in the GUI. 

 

The program will place the origin of coordinates at the centre of mass for any choice of 

star masses.  
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Let’s take a look at the parameters. 

 

Mass of star: self-explanatory. If you set one of the masses as tiny and make the 

separation reasonably large, you will recover our solar system. Remember for a binary 

system the angular velocity  is given by 
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planets are orbiting in a clockwise sense. 

 

Separation: This is the centre-to-centre separation of the two stars.  

 

Luminosity of star: Remember the solar luminosity is 3.87 in these units. 

 

Run time: This is the length of time for which the program computes the orbit. Now 

you may be tempted to turn this up to very high values. However, the program has a 

fixed upper limit of time steps so that it does not become unreasonably slow to 

compute the orbit. If you make the run time too large and have insufficient time steps, 

the orbit will not be calculated accurately. You will notice a small message box appears 

after a run to tell you that the orbit is trustable (accurate integration) or potentially 

unphysical (inaccurate integration). If you get the latter, try increasing the number of 

time steps in the Orbital Parameters box and re-computing the orbit. 

 

Position: All displacements on the plots are in AUs. 

 

Velocity: For guidance, the Earth orbits the Sun with a circular speed of 29 kms-1. 

However, remember, we are in a rotating frame (that is spinning clockwise in physical 

space). 

 

Albedo: The fraction of incident radiation reflected by the body 

 

Intrinsic temperature: If the planet has an internal energy source it will have a 

surface temperature even if not irradiated by a star. The default value corresponds to 

the value of temperature that Jupiter would have as a free-floating planet. 

 

Procedure 

 
Start with the default values and run the program. If the integration is inaccurate, 

increase the number of steps and run the program again. You will see that two plots are 

created: one is a plot of the planetary orbit in the plane of the binary; the other is the 

surface temperature of the planet as a function of time. The program makes a simplifying 

assumption that, even where the orbit is changing rapidly, the surface comes into 

thermodynamic equilibrium. You can see this may not be the case by comparing the 

temperature you achieve by standing adjacent to a radiator or brushing past it.   

 

• From the temperature graph, locate the closest approach the planet makes to each of 

the stars. Make a note of the temperature and calculate the distance of the planet from 
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the star. Verify that your result is consistent with the formulae you have met in the 

lectures for the surface temperature of a planet (see below). 

 

Refresher on Surface Temperatures 

 

The power absorbed by the planet is given by:  
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The quantity 
24 r

L


 represents the energy per unit area per unit time at the distance r 

form the Sun (or extrasolar star).  Notice that the planet has an effective absorbing area 

identical to a disc of radius R (can you figure out why?). The quantity represented by A is 

the albedo. It represents the fraction of incident radiation reflected by the body - to give 

some examples, Venus has an albedo of 0.76, Earth 0.35 and Mars 0.16. 

 

The radiated power can be estimated by assuming that the planet’s surface emits like a 

black body.  Remembering that the surface area of a sphere of radius R is 24 R  and that 

a black body at temperature T emits energy per unit time per unit area proportional to 

the (large) fourth power of the temperature 4T : 
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Set the two expressions for power radiated and power absorbed equal to each other 

and you should find that the equilibrium temperature is; 
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• Assess, at the two points you have found, how much of the surface temperature is due 

to the more distant star. 

 

• Now run the same orbit with different values of the albedo and with the intrinsic 

temperature equal to 0 K. Write your results in your logbook and plot an appropriate 

graph to best exhibit the dependence of the surface temperature on the albedo.  

 

• Describe, in a sentence or two, three different types of intrinsic energy in a planet that 

can lead to an intrinsic surface temperature. 

 

•  Keeping the albedo fixed, repeat this procedure but change the luminosity of the two 

stars. For simplicity keep the masses fixed. However for any luminosity you choose find 
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and record a plausible mass by doing some background research on the mass-luminosity 

relation for stars. 

 

• Make very small changes to the velocity of the planet and keep the graphs that result 

from your experiments. It is best to separately change the X and Y velocities by very 

small amounts. Using your library of orbits, comment on the likelihood of finding an 

orbit that switches from one star to the other. 

 

• Now find initial conditions to create three distinct orbits: one that orbits continuously 

around star 1; one that orbits continuously around star 2; one that encircles both stars. 

Collaborate with your friends to try different input values to help in the search. The 

section below gives some hints. (However use your own values for the two stellar 

masses and their separation). 

 

Dynamics in a rotating frame – an example 

 

Suppose our stars have masses of M1 = 2 solar masses and M2 = 1 solar mass 

respectively. Suppose they are separated by 5 AU. Then confirm the positions of the 

stars with respect to the centre of mass are correctly sketched below.  
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Then their orbital angular velocity around each other is 

1/ 2

1 2

3

( )G M M

a

+ 
 =  

 
 which 

equals 3.04 x 10-8 s-1. So although the stars will appear stationary in the program, they 

are really moving with speeds r with r = 1.67 AU for mass 1 and 3.33 AU for mass 2. 

Work out these two speeds: you should find 7.6 kms-1 and 15.2 kms-1.  

 

Now imagine a planet orbiting around star 1. It needs to be close to avoid a strong pull 

from star 2. Let’s say it has an orbit with semi-major axis a = 0.5 AU. If the star was 

isolated in space the circular speed of the planet around the star would be 
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58.8 kms-1. Suppose we place the planet in the initial position 

illustrated below. If we were in a stationary frame, it would need a velocity of (0, -58.8) 

to maintain a circular orbit.  

However, the speed of the point (-2.12 AU, 0) in the rotating frame is 9.6 kms-1(hint: 

2.12 x 1.496 x 1011 x ). The speed of Star 1 is 7.6 kms-1(1.67 x 1.496 x 1011 x ).   

So because of the rotating frame, there is a 2 kms-1 relative velocity offset of the planet 

relative to star 1. So we should use an initial velocity of (0, -58.8 -2 ) = (0, -60.8). 
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• The resulting orbit is shown above. You can see it’s nearly but not exactly circular.  

There are (at least) two reasons for this – can you suggest what they are?  From your 

graph, estimate the eccentricity of the orbit (i.e. using your mouse find the apastron 
(a(1+e)) and periastron distances (a(1- e)), and hence deduce the eccentricity). 

 

Some projects 

 

In the remaining time available to you, try one of the following investigations or come up 

with one of your own. 

 

1. Trojan Planets: The L4 and L5 Lagrangian points in this system always form an 

equilateral triangle with the two masses as illustrated below. Investigate the 

stability of a planetary orbit started very close to (but not on) one of the 

Lagrangian points with zero velocity. Try different mass ratios for the two stars. 

You should find that when the mass ratio is large enough, the planet can orbit 

around the Lagrangian point. Try and find the critical value of this mass ratio 

where stability first becomes possible. 
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2. Life around binary stars: Investigate habitable planets in a system of your 

choice – take habitability to be the presence of liquid water and use this 

constraint as a constraint on surface temperature 

 

 

 

 

 

 


