

University of Hertfordshire

Carbon Management Plan

Carbon Management Plan - Origins

- Hertfordshire University adopted the sector wide (HEFCE) target to reduce carbon emissions by 43% by 2020 against a 2005/06 baseline.
- The University's first Carbon Management Plan (CMP) was produced in 2007 and subsequently updated in 2011 and 2013
- The Plan provides a roadmap to achieving required carbon emission reductions through:-
 - Measures
 - Activities
- The CMP is undergoing a further update which will provide :-
 - Inclusion of the most recent years performance available
 - An updated programme for project implementation
 - Projections for potential achievements
 - Budget requirements

CMP – Where are we now?

2015/16 achieved a 16% reduction in CO₂ emissions (42% against 09/10)

CMP – Recent Completions & Current Projects

UH undertakes a range of measures that reduce carbon emissions

- Window replacement programme
- Lighting improvements (LED installations)
 - Fielder Centre
 - Maclaurin
 - Titan
 - Campus wide
- HVAC improvements (controls etc.)
 - Fielder
 - MacLaurin
- New Solar PV (50 tonnes p.a. CO₂ saved)
 - Mercer, Lindop, Todd & Art & Design

- College Lane LRC (400 500 tonnes p.a. CO₂ reduced)
 - Boilers & Combined Heat & Power (CHP)
 - Chillers
 - Lighting LED
 - Solar reflective film (reduces cooling load)
- Residences CHP
 - Upgrading the CHP unit at the Energy Centre will potentially provide 50% of the electricity required for the main College Lane Campus
- Upgrading the boilers at the De Havilland M, N
 & R blocks

Plus 'everyday' energy management activities – time and temperature optimisation etc.

CMP – Recent & Latest Projects

Projected to reduce annual emissions to 17,024 tonnes p.a., a 27% reduction vs 05/06

CMP – Potential Further Projects

A further reduction of 3740 tonnes CO₂ per annum will be required in order to meet the University's 2020 target for carbon emissions

New projects could include:-

- Additional Combined Heat and Power installations
- Further solar photo-voltaic panel arrays
- Possible conversion of some diesel UnoBus vehicles to electric operation
- Possible use of B20 Biodiesel for UnoBus bus operation

CMP – Potential Projects - CHP

Additional Combined Heat and Power Projects

- The concurrent generation of heat and electrical power from a single engine source can be more efficient than importing electricity and creating heat separately
- CHP is under consideration for the De Havilland Academic buildings and included in the College Lane LRC proposed refurbishment
- Potential for 750 tonnes CO₂ p.a. reduction at De Havilland
- Payback approaching 5 years

CMP – Potential Projects – Solar PV

There is substantial scope for further installation of solar PV arrays

- UH already has more than 300kWp of solar panels installed
- Recent additions include:-
 - Mercer
 - Lindop
 - Todd
 - Art & Design
- There is substantial further scope to install solar PV on the roofs of the De Havilland Academic buildings
- 230 tonnes CO₂ p.a. reduction
- Simple payback within 13 years

CMP – Investigation – UnoBus Fleet

Potential use of electric buses and B20 biodiesel fuel are under consideration

- UnoBus fuel consumption is included in UH carbon reporting (5,000 t CO₂ p.a.)
- Converting from regular diesel to grid electricity reduces emissions by 70 to 80%
- Electric buses are relatively expensive, require additional charging infrastructure and have some limitations with respect to range / type of route they can provide
- UH will continue to assess this option with a view to possible future electric bus operation

Converting to B20 biodiesel reduces CO₂ emissions by 20% but requires a cost premium. Confirmation is also required that engine longevity, performance and maintenance will be largely unaffected by any fuel change.

