

Neonatal Neurological Conditions & Care Julia Petty

Neurological assessment

- For any neurological condition....
- Reflexes are assessed
- Examination of cranial nerve function e.g. pupil response to light, blink, cough and gag reflex
- Consciousness alertness, responses to environment / pain (central) and cry
- Muscle tone and spontaneous movement
- Abnormal movements

Raised intracranial pressure (ICP)

- Observe for this in any neurological condition
- Decreased responsiveness
- Inability to fix follow

University*of* Hertfordshire

- Decreased spontaneous movement
- Decreased response to painful stimuli
- Pupil dilation with decreased response to light
- Observe fontanelles (?bulging)
- Effect on brain stem later (apnoea, bradycardia, hypertension)

Neonatal Brain Injury

- The effects of hypoxic damage (lack of oxygen) to the brain in the term newborn=
- 'Hypoxic-Ischaemic Encephalopathy' (HIE)
- Decreased oxygen delivery to, and perfusion of, vital organs, particularly the brain
- Causes *Include* : difficult labour, meconium aspiration
- Multi-system disorder
- Effect on brain & grade of HIE predicts outcome

Clinical Signs of HIE

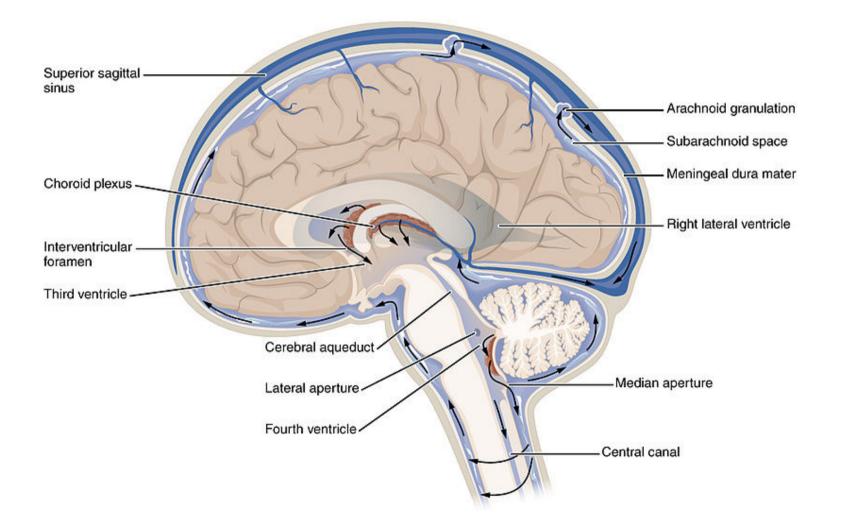
- May include.....
- Alterations in consciousness and behaviour
- Abnormal tone
- Convulsions
- Failure to maintain respiration
- Feeding difficulties
- Range / variability grading system
 (1=mild / 2= moderate / 3= severe)

Management

- Assess all systems Apgars?, pH and base deficit on blood gas at birth, clinical assessment, cerebral function monitoring? (CFM)
- Consider therapeutic cooling if criteria are met?
- Within the recommended time frame, transfer if appropriate for whole body therapeutic cooling.

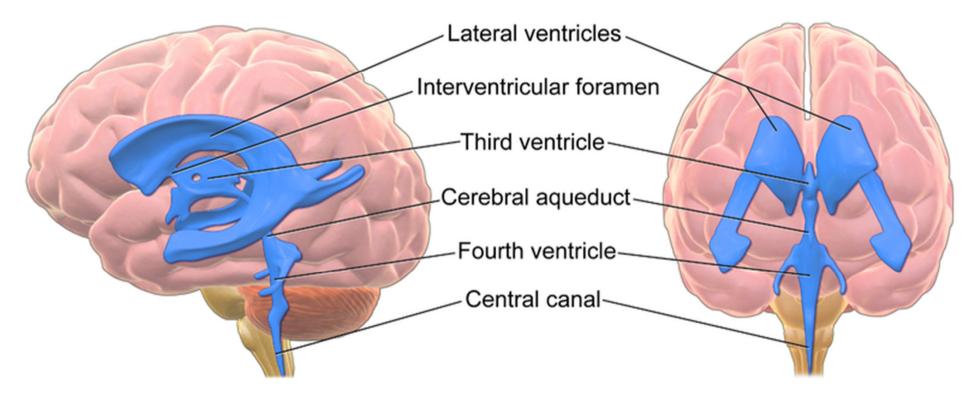
Ongoing support

- Respiratory & Circulatory support
- Support blood pressure
- Correct metabolic disturbances (e.g. glucose)
- Control cerebral oedema
- Restrict fluids to protect against cerebral oedema and reduces overload.
- Monitor urine output.
- Control CO2 carefully be aware of the effects of high and low CO2
- Anti-consultants to stabilise membranes and reduce cellular metabolism



Intraventricular haemorrhage

- Rupture of capillaries within the immature germinal matrix (GM) of the preterm brain
- GM is a collection of fine blood vessels that line the ventricles and is present between 24-34 weeks and then involutes
- Changes in cerebral blood flow precipitate bleeding – ventilation, abnormal CO2 levels, metabolic acidosis, coagulation disorders, stress



Flow of cerebrospinal fluid (CSF) and ventricles

Ventricles of the Brain

Ventricular System (lateral view)

Ventricular System (anterior view)

Classification based on the extent of bleeding

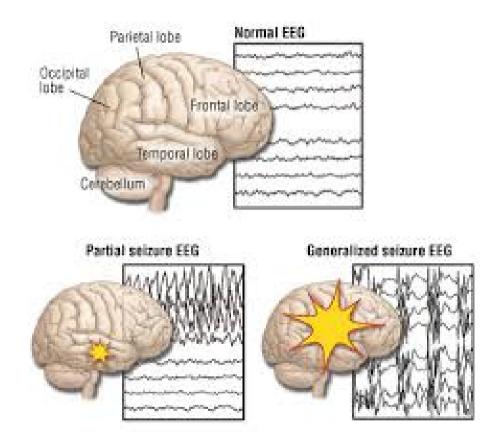
- 0 no bleed
- 1 germinal matrix only
- 2 germinal matrix with blood in the ventricles
- 3 germinal matrix with blood in the ventricles. May lead to hydrocephalus
- 4 intraventricular *and* parenchymal bleeding (into the brain tissue)
- Diagnosed by *head ultrasound*
- N.B. Grade determines outcome. Can be one side or both

Post haemorrhagic hydrocephalus

- Imbalance between production and absorption of CSF
- Ventricular dilatation shown on ultrasound
- Obstructive or non-obstructive
- Important factors are extent of the haemorrhage and the pressure
- Risk of increased ICP (observe closely) and need for CSF tapping, ? Later shunt?

Periventricular leucomalacia

- Associated with the preterm brain and leads to cerebral palsy
- Affects *periventricular* area (i.e. around the ventricles)
- Caused by bleeding or ischaemia (lack of blood supply) at this vulnerable area of brain
- Circulation at < 34 weeks based at this area, becomes more peripheral towards term (so less risk in term)
- Underperfusion and re-perfusion implicated (caused by swings of oxygen and/or blood pressure)
- Limited auto regulation in preterm neonate (i.e. unable to maintain adequate pressure to the brain during systemic low blood pressure)


Convulsions

• Convulsion , fit, seizure

University*of* Hertfordshire

- Differentiate from 'jittery' exaggerated responses to stimuli & fine tremulous movements
- Occurs in response to minor stimulation & movements cease when held, no eye deviation
- Fit Not stimulus provoked, movements do not cease and eye deviation present – with altered consciousness

Types of seizure

- Subtle similar to 'jitteriness' but have eye deviation / 'dancing', sucking, bicycling & apnoea
- Tonic extensor spasm of trunk and limbs
- Multifocal / clonic limbs
- Focal clonic limb or jaw
- Myoclonic jerking movements, multi

CAUSES

- Perinatal asphyxia
- Intracranial haemorrhage
- Infection (e.g. Meningitis)
- Drug withdrawal
- Metabolic e.g. glucose, calcium
- Inborn errors of metabolism
- Pyridoxine deficiency
- 5 day fits

Diagnosis

- History
- Examination
- Metabolic
- LP
- EEG / CFM
- Septic screen
- Ultrasound scan
- Urine metabolic

Long term care

- Ongoing and regular family support, information to parents, outcome discussions and reassurance.
- Developmental follow-up
- Physiotherapy and aid with motor problems
- Feeding interventions
- Long-term ventilation may be an issue
- Control of seizures
- Multi-disciplinary team approach

Further Reading

- Annibale, DJ and Rosenkrantz, T (2012). Periventricular Hemorrhage-Intraventricular Hemorrhage. <u>http://emedicine.medscape.com/article/976654-overview</u>
- British Association of Perinatal Medicine (2010) Position Statement on Therapeutic Cooling for Neonatal Encephalopathy. <u>http://www.bapm.org/publications/documents/guidelines/Position_Statement_Therapeutic_Cooling_Neon_atal_Encephalopathy_July%202010.pdf</u>
- Linder, N, Haskin, O, Levit, O, Klinger, G, Prince, T, Naor, N, Turner, P, Karmazyn, B and Sirota, L. (2003). Premature Infants: A Retrospective Case-Control Study
- Risk Factors for Intraventricular Hemorrhage in Very Low Birth Weight. *Pediatrics.* 111; e590. <u>http://pediatrics.aappublications.org/cgi/content/full/111/5/e590</u>
- NICE (2010) Guidance on Therapeutic Hypothermia. http://www.nice.org.uk/nicemedia/live/11315/48809/48809.pdf
- Shah PS, Ohlsson, A & Perlman, M. (2007) Hypothermia to Treat Neonatal Hypoxic Ischemic Encephalopathy: Systematic Review. *Arch Pediatr Adolesc Med.* ;161(10):951-958. doi:10.1001/archpedi.161.10.951. <u>http://archpedi.ama-assn.org/cgi/content/full/161/10/951</u>
- Zach, T and Rosenkrantz, T. (2012). Pediatric Periventricular Leukomalacia. <u>http://emedicine.medscape.com/article/975728-overview</u>
- Zanelli SA (2013) Hypoxic-Ischemic Encephalopathy <u>http://emedicine.medscape.com/article/973501-</u> <u>overview</u>