Neonatal Neurological Conditions & Care
Julia Petty
Neurological assessment

• For any neurological condition....

• Reflexes are assessed

• Examination of cranial nerve function – e.g. pupil response to light, blink, cough and gag reflex

• Consciousness – alertness, responses to environment / pain (central) and cry

• Muscle tone and spontaneous movement

• Abnormal movements
Raised intracranial pressure (ICP)

- *Observe for this in any neurological condition*
- Decreased responsiveness
- Inability to fix – follow
- Decreased spontaneous movement
- Decreased response to painful stimuli
- Pupil dilation with decreased response to light
- Observe fontanelles (?bulging)
- Effect on brain stem – later (apnoea, bradycardia, hypertension)
Neonatal Brain Injury

- The effects of hypoxic damage (lack of oxygen) to the brain in the term newborn =
- ‘Hypoxic-Ischaemic Encephalopathy’ (HIE)
- Decreased oxygen delivery to, and perfusion of, vital organs, particularly the brain
- Causes – *Include* : difficult labour, meconium aspiration
- Multi-system disorder
- Effect on brain & grade of HIE predicts outcome
Clinical Signs of HIE

- May include......
- Alterations in consciousness and behaviour
- Abnormal tone
- Convulsions
- Failure to maintain respiration
- Feeding difficulties
- Range / variability - grading system (1=mild / 2= moderate / 3= severe)
Management

• Assess all systems – Apgars?, pH and base deficit on blood gas at birth, clinical assessment, cerebral function monitoring? (CFM)

• Consider therapeutic cooling if criteria are met?

• Within the recommended time frame, transfer if appropriate for whole body therapeutic cooling.
Ongoing support

- Respiratory & Circulatory support
- Support blood pressure
- Correct metabolic disturbances (e.g. glucose)
- Control cerebral oedema
- Restrict fluids – to protect against cerebral oedema and reduces overload.
- Monitor urine output.
- Control CO2 carefully – be aware of the effects of high and low CO2
- Anti-consultants – to stabilise membranes and reduce cellular metabolism
Intraventricular haemorrhage

• Rupture of capillaries within the immature germinal matrix (GM) of the preterm brain
• GM is a collection of fine blood vessels that line the ventricles and is present between 24-34 weeks and then involutes
• Changes in cerebral blood flow precipitate bleeding – ventilation, abnormal CO2 levels, metabolic acidosis, coagulation disorders, stress
Flow of cerebrospinal fluid (CSF) and ventricles

- Superior sagittal sinus
- Choroid plexus
- Interventricular foramen
- Third ventricle
- Cerebral aqueduct
- Lateral aperture
- Fourth ventricle
- Median aperture
- Central canal
- Arachnoid granulation
- Subarachnoid space
- Meningeal dura mater
- Right lateral ventricle
Ventricles of the Brain

- Lateral ventricles
- Interventricular foramen
- Third ventricle
- Cerebral aqueduct
- Fourth ventricle
- Central canal

Ventricular System (lateral view) Ventricular System (anterior view)
Classification based on the extent of bleeding

• 0 - no bleed
• 1 - germinal matrix only
• 2 - germinal matrix with blood in the ventricles
• 3 - germinal matrix with blood in the ventricles. May lead to hydrocephalus
• 4 - intraventricular and parenchymal bleeding (into the brain tissue)
• Diagnosed by head ultrasound
• N.B. Grade determines outcome. Can be one side or both
Post haemorrhagic hydrocephalus

- Imbalance between production and absorption of CSF
- Ventricular dilatation shown on ultrasound
- Obstructive or non-obstructive
- Important factors are extent of the haemorrhage and the pressure
- Risk of increased ICP (observe closely) and need for CSF tapping, ? Later shunt?
Periventricular leucomalacia

- Associated with the preterm brain and leads to cerebral palsy
- Affects *periventricular* area (i.e. around the ventricles)
- Caused by bleeding or ischaemia (lack of blood supply) at this vulnerable area of brain
- Circulation at < 34 weeks based at this area, becomes more peripheral towards term (so less risk in term)
- Underperfusion and re-perfusion implicated (caused by swings of oxygen and/or blood pressure)
- Limited auto regulation in preterm neonate (i.e. unable to maintain adequate pressure to the brain during systemic low blood pressure)
Convulsions

- Convulsion, fit, seizure
- Differentiate from ‘jittery’ – exaggerated responses to stimuli & fine tremulous movements
- Occurs in response to minor stimulation & movements cease when held, no eye deviation
- Fit – Not stimulus provoked, movements do not cease and eye deviation present – with altered consciousness
Types of seizure

• Subtle – similar to ‘jitteriness’ but have eye deviation / ‘dancing’, sucking, bicycling & apnoea
• Tonic – extensor spasm of trunk and limbs
• Multifocal / clonic - limbs
• Focal clonic – limb or jaw
• Myoclonic – jerking movements, multi
CAUSES

- Perinatal asphyxia
- Intracranial haemorrhage
- Infection (e.g. Meningitis)
- Drug withdrawal
- Metabolic – e.g. glucose, calcium
- Inborn errors of metabolism
- Pyridoxine deficiency
- 5 day fits
Diagnosis

- History
- Examination
- Metabolic
- LP
- EEG / CFM
- Septic screen
- Ultrasound scan
- Urine - metabolic
Long term care

- Ongoing and regular family support, information to parents, outcome discussions and reassurance.
- Developmental follow-up
- Physiotherapy and aid with motor problems
- Feeding interventions
- Long-term ventilation may be an issue
- Control of seizures
- Multi-disciplinary team approach
Further Reading

